netpyne.conversion.sonataImport
Module with functions to import from and export to SONATA format
Functions:
|
Load a generic csv file as used in Sonata |
|
|
|
|
|
Replace reconstructed axon with a stub :param hobj: hoc object |
|
Replace reconstructed axon with a stub (keep order); BBP version :param hobj: hoc object |
|
Set nseg of sections based on dL param: section.nseg = 1 + 2 * int(section.L / (2*dL)) :param secs: netpyne dictionary with all sections :param dL: dL from config file |
|
Swap soma x and y coords so cylinder is vertical instead of horizontal |
Classes:
|
- netpyne.conversion.sonataImport.load_csv_props(info_file)[source]
Load a generic csv file as used in Sonata
- netpyne.conversion.sonataImport.fix_axon_peri(hobj)[source]
Replace reconstructed axon with a stub :param hobj: hoc object
- netpyne.conversion.sonataImport.fix_axon_peri_v2(hobj)[source]
Replace reconstructed axon with a stub (keep order); BBP version :param hobj: hoc object
- netpyne.conversion.sonataImport.fix_sec_nseg(secs, dL)[source]
Set nseg of sections based on dL param: section.nseg = 1 + 2 * int(section.L / (2*dL)) :param secs: netpyne dictionary with all sections :param dL: dL from config file
- netpyne.conversion.sonataImport.swap_soma_xy(secs)[source]
Swap soma x and y coords so cylinder is vertical instead of horizontal
- class netpyne.conversion.sonataImport.SONATAImporter(**parameters)[source]
Bases:
object
Methods:
importNet
(configFile[, replaceAxon, ...])SONATA method - works but same results as NeuroMLlite
parse_group
(g)subs
(path)Search the strings in a config file for a substitutable value, e.g.